News

Two people discuss an exhibit wall displaying a ceramic mug

Artifacts from a half century of cancer research

MIT Koch Institute

Throughout 2024, the Koch Institute has celebrated 50 years of MIT’s cancer research program and the individuals who have shaped its journey. In honor of this milestone anniversary year, the Koch Institute celebrated the opening of a new exhibition: Object Lessons: Celebrating 50 Years of Cancer Research at MIT in 10 Items. Object Lessons invites the public to explore significant artifacts—from one of the earliest PCR machines, developed in the lab of Nobel laureate H. Robert Horvitz, to Greta, a groundbreaking zebrafish from the lab of Professor Nancy Hopkins—in the half century of discoveries and advancements that have positioned MIT at the forefront of the fight against cancer.  

Filter by

Filter by Title/Description

Filter by Topic

Filter by Year

Behind the Vaccines

MIT Technology Review

Beneath every great biotech innovation lies many years of research. KI members Phil Sharp and Robert Langer reflect on the early days of RNA discovery and innovation in a Tech Review feature by MIT President Rafael Reif, profiling the Institute’s contributions to Moderna’s “overnight” success developing an mRNA vaccine for COVID-19. Both Sharp’s work on mRNAs and Langer’s on lipid nanoparticles began in the 1970’s. Similarly, both play an increasingly important role in human health, advancing new tools to fight COVID, cancer and other diseases.

Next Stop KRAS

Elicio Therapeutics

The FDA approved biotech startup Elicio will begin clinical testing of their “hitchhiking” therapeutic vaccine candidate designed to target mutated KRAS cancers using the Irvine Lab's signature lymph node targeting technology. The trial will enroll patients with mKRAS+ pancreatic ductal adenocarcinoma and other solid tumors.

Progress Against Prostate Cancer Proceeds

Cardiff Oncology

Positive data continue to emerge from Phase II clinical trials in advanced prostate cancer of a synergistic drug combination identified by the Yaffe Lab. Fine-tuning the dosing schedule more than doubled the percentage of patients whose cancer stabilized or responded positively to treatment. Ongoing biomarker research in the Yaffe Lab has revealed genetic mutations that may help clinicians predict treatment response to the combination and support efficient design of future trials. This trial and related research have been funded in part by the Bridge Project and the MIT Center for Precision Cancer Medicine.

Inside an Immune Response

Science Immunology

Working with collaborators to collect longitudinal samples during clinical trials of a new treatment technique for brain hemorrhage, the Love and Shalek Labs have published a new study in Science Immunology illuminating immune activity in acute injury. The team’s data show an evolution of macrophages, a type of immune cell, from a pro-inflammatory to anti-inflammatory state. The researchers also saw metabolic shifts, and found glycolytic metabolism—normally seen in cancer cells—in the macrophages was associated with better patient outcomes. These types of transitions in macrophage inflammation and metabolism are also known to be important in cancer, for which these findings provide additional insights and reference points.

New Immunotherapy Target in Glioblastoma

Cell

A new paper in Cell from a Bridge Project team working on brain cancer sheds light on how gene expression in T cells affects response to immunotherapy in tumors called gliomas. Single-cell RNA sequencing approaches developed in the Regev Lab highlighted the role of KLRB1. Silencing this gene in cell and animal models enhanced T cell killing of glioma cells, suggesting its utility as an immunotherapy target.

Tying Up Loose Ends in RNA Therapeutics

Chemical & Engineering News

Orna, co-founded by KI member Daniel Anderson and based on strategies developed in his lab offers an alternative to current RNA-based therapies. By connecting the loose ends of linear messenger RNA molecules, Orna’s circularized “oRNAs” could improve stability of mRNA therapies, leading to more efficient delivery of drugs into cells and increased expression of disease-fighting proteins. The company will develop and test their approach in the area of cancer immunotherapy.

Bhatia Tracks Treatment Response

MIT News

Best known for applications in cancer diagnostics, the Bhatia lab’s synthetic biosensor platform can also be used to monitor and understand treatment response. In partnership with Gilead, Bhatia’s startup, Glympse Bio, is using the technology in trials with NASH patients.

Weinberg wins Japan Prize

MIT News

Three cheers to Daniel K. Ludwig Professor for Cancer Research Robert Weinberg, 2021 Japan Prize laureate in the field of Medical Science and Medicinal Science. He is honored jointly with Bert Vogelstein (Johns Hopkins Medicine) for their pioneering contributions to the development of a multi-step carcinogenesis model, its application and its impact on improving cancer treatment. The Japan Prize is awarded annually to scientists and engineers from around the world who have made significant contributions to the advancement of science and technology, thereby furthering the peace and prosperity of humankind. 

Making Mammography-based Risk Assessment More Robust

MIT News

Researchers led by Regina Barzilay and Constance Lehman (Mass General Hospital) developed a new risk-assessment algorithm to improve accuracy, consistency, and equity in breast cancer diagnosis. Described on YouTube and published Science Translational Medicine, the Mirai system incorporates the unique requirements of risk modeling into their AI-driven screening tools and works across diverse populations, leading to equitable healthcare outcomes.

Expanding Options for Tissue Analysis

MIT News

Combining tissue expansion and RNA sequencing techniques, Ed Boyden and collaborators developed an approach to mapping gene expression in tissue samples that can pinpoint an individual molecule of mRNA within a cell. In a study appearing in Science, researchers examined tumor and immune cells in breast cancer metastases, uncovering unique behaviors based on cell location.