The David H. Koch Institute for Integrative Cancer Research at MITThe David H. Koch Institute for Integrative Cancer Research at MIT

Massachusetts Institute of Technology

National Cancer Institute Cancer Center

Science + Engineering... Conquering Cancer Together

Forest M. White, PhD

Forest M. White

Ned C. and Janet Bemis Rice Professor of Biological Engineering

Member, MIT Center for Precision Cancer Medicine


KI Research Areas of Focus:
, Personalized Medicine, Cancer Immunology

"The focus of research in our laboratory is the identification of therapeutic targets for cancer and other diseases.  In this effort we use systems biology, combined with computational modeling, to define activated signal transduction networks driving the pathological state, or to define cell-surface immune targets enriched on diseased cells.  By focusing on proteins, protein modifications, and surface-presented peptides, our approach complements other systems-level approaches focused at the genomic or transcriptomic level.  The ultimate goal of this work is to define novel therapeutic strategies using combinations of cancer therapies, or combinations of chemotherapies and targeted immunotherapies."

Forest White is a professor of biological engineering at MIT, a member of the Koch Institute and a member of the MIT Center for Precision Cancer Medicine. He earned his bachelor’s degree in chemistry from Framingham State College in 1993, and a doctorate in analytical chemistry from Florida State University in 1997. Following postdoctoral research in bioanalytical chemistry in the laboratory of Donald Hunt at the University of Virginia, he joined MDS Proteomics, Inc. as a research scientist working his way up to group leader. Forest White joined MIT in 2003 as an assistant professor and was awarded the Mitsui Career Development Professorship (2005-2008). In 2010, he received the Ruth and Joel Spira Award for Excellence in Teaching.

Research Summary

Forest White's research seeks to develop a detailed understanding of the signaling networks that allow cells to respond to external stimuli. Receptors on the surface of cells interact with molecules, or ligands, in the extracellular environment, and the receptors must then communicate information to the inside of a cell. The most common way to transmit these signals is by covalent modification of target proteins within the signaling pathway, most often adding a phosphate group (phosphorylation) or removing a phosphate group. Phosphorylation is performed by kinases and dephosphorylation is performed by phosphatases. Failure or aberrant activity of kinases and phosphatases can lead to human diseases such as cancer, diabetes, and autoimmune disorders. The White lab uses systems biology-based approaches to examine large portions of the networks at once, while still maintaining site-specific resolution. The White lab is using this technology to study the signaling networks underlying continued progression and therapeutic resistance of breast, brain, and lung cancers, as well as several other disease states. The goal of White's research is to deepen the understanding of how cells respond to their environment, while develop new ways to detect malfunctions in the cellular networks and generate corresponding therapies.

Selected Publications

Johnson H, White FM. 2018. Quantitative Analysis of Tyrosine Kinase Signaling Across Differentially Embedded Human Glioblastoma Tumors. Methods Mol Biol 1711: 149–164.

Emdal KB, Dittmann A, Reddy RJ, Lescarbeau RS, Moores SL, Laquerre S, White FM. 2017. Characterization of In Vivo Resistance to Osimertinib and JNJ-61186372, an EGFR/Met Bispecific Antibody, Reveals Unique and Consensus Mechanisms of Resistance. Mol Cancer Ther 16: 2572–2585.

Reddy RJ, Gajadhar AS, Swenson EJ, Rothenberg DA, Curran TG, White FM. 2016. Early signaling dynamics of the epidermal growth factor receptor. Proc Natl Acad Sci USA 113: 3114–3119.

Lescarbeau RS, Lei L, Bakken KK, Sims PA, Sarkaria JN, Canoll P, White FM. 2016. Quantitative Phosphoproteomics Reveals Wee1 Kinase as a Therapeutic Target in a Model of Proneural Glioblastoma. Mol Cancer Ther 15: 1332–1343.

Gajadhar AS, Johnson H, Slebos RJC, Shaddox K, Wiles K, Washington MK, Herline AJ, Levine DA, Liebler DC, White FM, et al. 2015. Phosphotyrosine signaling analysis in human tumors is confounded by systemic ischemia-driven artifacts and intra-specimen heterogeneity. Cancer Res 75: 1495–1503.

Curran TG, Zhang Y, Ma DJ, Sarkaria JN, White FM. 2015. MARQUIS: a multiplex method for absolute quantification of peptides and posttranslational modifications. Nat Commun 6: 5924.

Arneja A, Johnson H, Gabrovsek L, Lauffenburger DA, White FM. 2014. Qualitatively different T cell phenotypic responses to IL-2 versus IL-15 are unified by identical dependences on receptor signal strength and duration. J Immunol 192: 123–135.

Johnson H, Del Rosario AM, Bryson BD, Schroeder MA, Sarkaria JN, White FM. 2012. Molecular characterization of EGFR and EGFRvIII signaling networks in human glioblastoma tumor xenografts. Mol Cell Proteomics 11: 1724–1740.

Carlson SM, Chouinard CR, Labadorf A, Lam CJ, Schmelzle K, Fraenkel E, White FM. 2011. Large-scale discovery of ERK2 substrates identifies ERK-mediated transcriptional regulation by ETV3. Sci Signal 4: rs11.

Huang PH, Miraldi ER, Xu AM, Kundukulam VA, Del Rosario AM, Flynn RA, Cavenee WK, Furnari FB, White FM. 2010. Phosphotyrosine signaling analysis of site-specific mutations on EGFRvIII identifies determinants governing glioblastoma cell growth. Mol Biosyst 6: 1227–1237.

Search PubMed for White lab publications

Contact Information

Forest M. White

room 76-353
phone (617) 258-8949

White Lab

phone (617) 324-0403
fax (617) 258-0225

Administrative Assistant:

Isadora Deese
phone (617) 324-3938