News

Viktor Adalsteinsson

KI alum Viktor Adalsteinsson develops liquid biopsies to detect cancer

Slice of MIT

Cancer patients who undergo surgery are often left with a frightening question: Did the surgeons get all the cancerous cells? No one wants a recurrence of disease, but additional treatments such as radiation or chemotherapy have significant side effects. That’s why Viktor Adalsteinsson PhD ’15 has been developing tools to support better-informed treatment decisions: so-called “liquid biopsies” that can detect the presence of cancer from a simple blood test.

Filter by

Filter by Title/Description

Filter by Topic

Filter by Year

Safer Ventilator Sharing

Science Translational Medicine

Researchers led by KI postdoc Shriya Srinivasan developed a safer method for COVID-19 patients to share ventilators. The approach, described in Science Translational Medicine, enables ventilation that's customized to each patient. The team is looking for partners to help fund, supply, and deploy the system.

Critical Analysis

MIT News

As head of a COVID-19 Intensive Care Unit at Beth Israel Deaconess Medical Center and co-director of the acute care and ICU section at Boston Hope, Michael Yaffe offers his perspective as both cancer researcher and intensivist/trauma surgeon on the evolution of emergency care during this crisis and beyond. 

“I wish I was chilling.”

Boston Globe

The Boston Globe reports that physical isolation is no match for Bob Langer. From vaccine development to viral blood-brain barrier studies, the ever-prolific engineer is doing his part for coronavirus response efforts. Catch up with him (if you can) via recorded web chat or help your student at home channel their inner-Langer with some STEM inspiration.

High-Capacity Viral Diagnostics

MIT News

A new CRISPR-based diagnostic platform simultaneously performs thousands of tests to detect viruses, including SARS-CoV-2. In a study published in Nature, researchers adapted microfluidic technology developed in the Blainey Lab and supported in part by the Bridge Project to create chips that can run thousands of tests flexibly configured across different numbers of samples and viruses.

Nothing to Sneeze At

Whitehead Institute

Sabatini Lab postdoc and pulmonologist Raghu Chivukula used cell culture and electron microscopy to unravel the mystery of a rare genetic mutation behind an unknown lung disease. His 2019 Image Awards winning image shows the “airway in a dish” that proved the foundational model for the eventual diagnosis.

Sussing Out Susceptibility

MIT News

A team including Alex Shalek, KI member and recently named Harold E. Edgerton Faculty Achievement Award recipient, is using gene expression data to identify specific types of cells targeted by the coronavirus behind the COVID-19 pandemic. Their study’s results, published in Cell and reported on in The Boston Globe and the NIH Director’s Blog, could be used to guide future treatment of the disease.

This work was supported in part by the MIT Stem Cell Initiative. The team recently received an award from the Chan Zuckerberg Initiative to study how cells in the airways of pediatric patients respond to SARS-CoV-2 and common respiratory viruses.

Faster, Cheaper, Scalable

MIT News

A small team of graduate researchers has returned to the Love Lab with a mission: generate and test preclinical materials to help develop an affordable, accessible COVID-19 vaccine for large-scale production on a lightning-speed timeline. Although there are efforts underway across the globe to manufacture vaccines in the hundreds of millions, billions of doses may be necessary. To address this gap, the researchers are deploying a strategy developed under a Grand Challenge for ultra-low cost vaccines and are now simultaneously testing their first candidate component for a vaccine and optimizing the manufacturing process. The concurrent approach allows the team to develop vaccine components with manufacturability in mind from the start and potentially compresses the timeline from benchtop to full-scale production.

Balancing Act

MIT News

MIT senior and former Anderson/Langer Lab researcher Steven Truong brings his experience as a biological engineering student home in the wake of the COVID-19 pandemic. As the resident biomedical expert in his immigrant family, Truong balances schoolwork with medical challenges, language barriers, and a pressing need to combat misinformation.

Turning the Peptide on Lung Cancer Detection

MIT News

The Bhatia Lab’s peptide-based nanosensors offer a non-invasive strategy for early cancer detection. In a study published in Science Translational Medicine, researchers used intratracheally administered particles in combination with machine learning algorithms to accurately detect lung tumors as small as 2.8 cubic millimeters. Working with Jacks Lab collaborators, they showed in genetically engineered mouse models that their urine-based diagnostic could also distinguish between early-stage cancer and noncancerous inflammation of the lungs, which could greatly reduce the number of false positives in a clinical setting. Watch video.

The research was supported in part by the Marble Center for Cancer Nanomedicine, the Koch Institute Frontier Research Program through a gift from Upstage Lung Cancer, and the Johnson & Johnson Lung Cancer Initiative.

Weight Loss and Pancreatic Cancer

Yale Cancer Center

Along with his former KI mentor, Jacks Lab alum and collaborator Mandar Muzumdar is a senior author on a study investigating obesity’s role in pancreatic cancer progression. The work, partly supported by the Lustgarten Foundation, appears in Cell and examines the effects of genetically-engineered and dietary induction of weight loss on tumorigenesis.