The David H. Koch Institute for Integrative Cancer Research at MITThe David H. Koch Institute for Integrative Cancer Research at MIT

Massachusetts Institute of Technology

National Cancer Institute Cancer Center

Science + Engineering... Conquering Cancer Together

In the News

Allison Lau, with a lab bench behind her

Shedding Metabolite on Pancreatic Cancer

Vander Heiden Lab researchers are using a novel nutrient-labeling approach to understand metabolic differences between cell types. A new study published in eLife examines enzyme activity of tumor cells and fibroblasts in organoid cell cultures and mouse models of pancreatic ductal adenocarcinoma, and suggests potential pathways for curtailing tumor growth. more...

illustration of gaseous molecules

Nanoparticles on Trachea to Greatness

Bhatia Lab researchers are breathing new life into their signature protease activity nanosensors. Chemical modifications to synthetic biomarkers (previously used to develop urinary diagnostics for pneumonia and cancer) allow the nanoparticles to release a peptide-based "breath signal" in the presence of respiratory disease. The re-engineered system, described in Nature Nanotechnology, can be used for both diagnosis and monitoring of disease progression or treatment. The researchers are modeling future iterations of the technology on inhalers and breathalyzer tests, and hope to use it to detect specific pathogens such as the SARS-CoV-2 virus. more...

rendering of syringe injecting a cell covered in proteins

Wittrup Lab Sticks It To Tumors

The Wittrup Lab's "Velcro vaccine" is the not-so-secret weapon behind Cullinan Oncology's newly launched subsidiary, Cullinan Amber. The company aims to enhance cytokine-based immunotherapy using the lab's collagen-binding technology, which confines these powerful yet toxic treatments to the tumor microenvironment. more...

There's No Place Like Proteome

A new proteomic analysis platform combining a panel of engineered nanoparticles' protein chemistry and machine learning could open up new avenues to predict, diagnose, and treat disease. In a study appearing in Nature Communications, a team including Robert Langer and other researchers from MIT, Harvard Medical School, Seer and elsewhere, analyzed the proteome in an unbiased, unconstrained manner, and with a depth, breadth, and speed not previously possible. As proof-of-concept, the study demonstrated the platform could be used for the accurate detection of early-stage lung cancer. more...

Facing Down Mask Shortages

A team of researchers from Brigham and Women's Hospital and the Koch Institute unveiled their prototype model for a reusable silicone face mask. The design, published in British Medical Journal Open, uses scalable manufacturing technology to produce an easily sterilizable, N95-filter-ready mask for use by health care providers and the general public. Following successful fit and breathability testing in the clinic, the team is working on a second version with improved comfort and durability. more...

Nancy Hopkins holding a small tank of zebrafish

Dissecting Discrimination

Picture a Scientist combines hard data and personal experience to continue the conversation begun by Nancy Hopkins in “A Study on the Status of Women Faculty in Science at MIT.” Documenting the story behind the landmark report, the film examines the persistence of gender discrimination and the considerable barriers facing women scientists—particularly women of color—over the last two decades. more...

cells dividing

Sizing Up Cell Growth

Manalis Lab researchers engineered a larger version of their signature microfluidic mass measurement technology to investigate how cell size and cell cycle contribute to cell growth. The study, published in PNAS, reveals that a cell's growth efficiency is primarily determined by its cell cycle state, not its size, and lays the groundwork for using these devices to monitor growth in large cells and 3D clusters with high resolution. The work was supported in part by the Koch Institute Frontier Research Program through the Kathy and Curt Marble Cancer Research Fund and the MIT Center for Cancer Precision Medicine. more...

Making Heads and Tails of Metastasis

A new Cancer Research paper draws on Image Award-winning research to explore the influence of the YAP gene on metastasis. Using a transparent zebrafish model and time lapse imaging, Hynes Lab researchers tracked the movement of tumor cells through the vasculature, determining that YAP promotes active migration within small blood vessels and wider dissemination throughout the body. Working with the Manalis Lab to corroborate these findings in a mouse model, the team demonstrated how a single gene can affect global patterns of metastasis. The research was supported in part by the Ludwig Center for Molecular Oncology at MIT. more...

red dots on a black background

Concentrating on Cancer Drugs

The Young Lab identified a mechanism by which small molecule cancer drugs concentrate within cells. In a study appearing in Science, researchers added cisplatin and mitoxantrone to mixtures of different types of cellular condensates—tiny droplets of close-packed proteins where complex functions are carried out. Their results offer insight into the effectiveness of cisplatin—as well as into tamoxifen resistance—and suggest that small molecule drugs can be tailored to target particular droplets to increase their efficacy. more...

engineered billiary tree

Imaging Science

The Koch Institute teamed up with the MIT Museum for Imaging Science, a two-week exploration of everyday science photography. A series of photography tutorials and webinars featured images and insight from KI Image Awards contributors, including Lina Colucci, Keith Ellenbogen, Felice Frankel, Jeffrey Kuhn, Sudha Kumari, Erika Reinfeld, Quinton Smith, and Matheus Victor. more...