The David H. Koch Institute for Integrative Cancer Research at MITThe David H. Koch Institute for Integrative Cancer Research at MIT

Massachusetts Institute of Technology

National Cancer Institute Cancer Center

Science + Engineering... Conquering Cancer Together

tumor section

Location, Location, Location

Matthew Vander Heiden and Bridge Project collaborators demonstrate in a Nature Cancer paper that metabolic differences between primary and metastatic brain tumors may serve as therapeutic targets. The research team showed that breast cancer metastases in the brain require fatty acid synthase expression because they must make their own fats, as compared to breast cancer tumors in the breast, where fats are abundant and accessible. Therapies that inhibit fatty acid synthase in these brain metastases may be a promising strategy for combatting these fatal and drug resistant tumors. This work was also supported in part by the MIT Center for Precision Cancer Medicine, and the Ludwig Center at MIT.   more...

a trisomy 8 Ewing sarcoma cell

In-eight Ability

Paradoxically, variation in the number of chromosomes each cell carries impedes the ability of normal cells to grow and proliferate—but not for cancer cells. By combining bench experiments with bioinformatic algorithms developed in the Barbara K. Ostrom 1978 Bioinformatics and Computing facility, Amon Lab researchers demonstrate how an extra copy of chromosome 8 in Ewing’s sarcoma helps rather than hinders cell survival and growth. In the study published in Genes and Development, researchers found that the EWS-FLI1 fusion oncogene, which drives 85% of Ewing’s sarcomas, results in replication stress and increased DNA damage. An extra copy of chromosome 8 alleviated the cellular stress caused by the oncogene by adding additional copies of RAD21, a gene implicated in DNA damage repair. The team’s findings offer new insight into the mechanisms behind tumorigenesis. more...

Nancy Hopkins and Aviv Regev

Hail Fellows, Well Met

Nancy Hopkins and Aviv Regev were elected to the 2021 class of American Association for Cancer Research Fellows. Hopkins was honored for helping to establish zebrafish as an essential disease model—which has also earned her the International Zebrafish Conference's 2021 George Streisinger Award—as well as her research involving murine RNA tumor viruses. Regev was honored for her work developing computational approaches to understanding molecular circuits and developing technologies for high throughput, single-cell screening. more...

Matthew Vander Heiden

Koch Institute Names New Director

Matthew Vander Heiden has been named the next director of MIT’s Koch Institute for Integrative Cancer Research, effective April 1. An MIT professor of biology, a practicing oncologist at Dana-Farber Cancer Institute, and a pioneer in the field of cancer cell metabolism, Vander Heiden was one of the first faculty members hired to join the Koch Institute after it was created. He has served as associate director since 2017, and is a member of the MIT Center for Precision Cancer Medicine, the Ludwig Center for Molecular Oncology, and the Broad Institute of Harvard and MIT. His work has been recognized by many awards, including the HHMI Faculty Scholar Award and an NCI Outstanding Investigator Award. Now, as he guides the Koch Institute into its second decade, he looks forward to taking advantage of new opportunities to make fundamental discoveries in the biology of cancer, as well as translating existing knowledge into better treatments for patients. Vander Heiden succeeds Tyler Jacks, who has served as director for more than 19 years, first for the MIT Center for Cancer Research and then for its successor, the Koch Institute. more...

molecular simulation of nanostructures blends into electron microscope photograph of the same structures

Some Self-Assembly Required

A new screening platform combines machine learning with high-throughput experimentation to identify self-assembling nanoparticles for drug delivery. Nanoparticles, usually made from lipids, polymers or both, can improve a drug’s pharmacokinetics. However, nanoparticle production can be complex and their drug payload small. In a study published in Nature Nanotechnology, researchers from the Langer and Traverso Labs screened 2.1 million pairings of small molecule drugs and inactive drug ingredients, identifying 100 new nanoparticle formulations that are simple to create and shuttle larger drug cargoes. One of those nanoparticles, combining the cancer medicine sorafenib with glycyrrhizin (the primary flavoring of licorice), proved more effective than than sorafenib alone in both cell culture and a genetic mouse model of liver cancer. more...

Time to Face the Mucus

Irvine Lab researchers are building an army of T cells ready to fight disease in the respiratory tract. The inhalable vaccines use the naturally occurring protein albumin to carry immune response-generating antigens into the mucosal lining of lungs and lymph nodes, where soldier T cells learn to recognize and fend off unwanted intruders. In a study published in Science Immunology and funded in part by the Bridge Project and the Marble Center for Cancer Nanomedicine, researchers observed a 25-fold increase in T cell response over traditional muscular injections. Ultimately, the team aims to develop vaccines that protect against both viruses and cancer, and combat metastasis by priming the mucosal lining in key organs to reject invading cancer cells. The technology has been licensed by Elicio Therapeutics, which will begin clinical testing of an albumin-binding vaccine later this year. more...

illustration of two cancer cells watching a home video

A Field Guide to Cancer Progression

Tag along with the Whitehead Institute’s “Cells Over Time” series to explore key moments of cancer progression. First stop: Jaenisch Lab, where chimeras shed new light on the cellular origins of neuroblastoma. In collaboration with the Spranger Lab, the researchers investigate how newly formed cancer cells “trick” immune cells into not destroying them. Spranger Lab technologies are also being used in the Weinberg Lab to understand the changes that occur when breast cancer cells become metastatic and acclimate to far-flung homes. Of course, this whirlwind tour would not be complete without a visit to the Weissman Lab where researchers have adapted a lung cancer model developed by the Jacks Lab to analyze gene expression as tumors evolve. Together, these intrepid explorers are charting a way forward in cancer biology. more...

Paula Hammond and Barack Obama in the lab

Scientific Modeling

Paula Hammond guest edits C&EN’s 2021 Trailblazers issue, highlighting the achievements of Black chemists and engineers in their own voices. Amid the reflections on past and present research, accomplishment and inclusion, career origins and evolutions, don’t miss Hammond’s own profile, tracing her path from young nerd to nanomaterials pioneer. more...

woman in lab coat stand next to a chart

The Companies They Keep

The Future Founders Initiative is off and running, making important strides to increase the number of woman-founded companies in biotech. Led by KI members Sangeeta Bhatia and Harvey Lodish, the initiative builds on Bhatia's recent work with Susan Hockfield and Nancy Hopkins around gender disparities in entrepreneurship, focusing on networking and community building. more...

two researchers work together on a small device

Breaking Through Cancer: Collaborative translational research goes nationwide

Break Through Cancer announced its formal launch as a public foundation designed to find new solutions to the most intractable challenges in cancer. Led by Dr. Tyler Jacks, the David H. Koch Professor of Biology and Founding Director of the Koch Institute for Integrative Cancer Research at MIT, Break Through Cancer will fund and support collaborative research teams drawn from several of the country’s top cancer centers. more...

vials of lipid-like molecules arranged to spell out MIT

Behind the Vaccines

Beneath every great biotech innovation lies many years of research. KI members Phil Sharp and Robert Langer reflect on the early days of RNA discovery and innovation in a Tech Review feature by MIT President Rafael Reif, profiling the Institute’s contributions to Moderna’s “overnight” success developing an mRNA vaccine for COVID-19. Both Sharp’s work on mRNAs and Langer’s on lipid nanoparticles began in the 1970’s. Similarly, both play an increasingly important role in human health, advancing new tools to fight COVID, cancer and other diseases. more...

lymph node cross section with vaccine labeled in green

Next Stop KRAS

The FDA approved biotech startup Elicio will begin clinical testing of their “hitchhiking” therapeutic vaccine candidate designed to target mutated KRAS cancers using the Irvine Lab's signature lymph node targeting technology. The trial will enroll patients with mKRAS+ pancreatic ductal adenocarcinoma and other solid tumors. more...

prostate cancer cells

Progress Against Prostate Cancer Proceeds

Positive data continue to emerge from Phase II clinical trials in advanced prostate cancer of a synergistic drug combination identified by the Yaffe Lab. Fine-tuning the dosing schedule more than doubled the percentage of patients whose cancer stabilized or responded positively to treatment. Ongoing biomarker research in the Yaffe Lab has revealed genetic mutations that may help clinicians predict treatment response to the combination and support efficient design of future trials. This trial and related research have been funded in part by the Bridge Project and the MIT Center for Precision Cancer Medicine. Read more more...

macrophages

Inside an Immune Response

Working with collaborators to collect longitudinal samples during clinical trials of a new treatment technique for brain hemorrhage, the Love and Shalek Labs have published a new study in Science Immunology illuminating immune activity in acute injury. The team’s data show an evolution of macrophages, a type of immune cell, from a pro-inflammatory to anti-inflammatory state. The researchers also saw metabolic shifts, and found glycolytic metabolism—normally seen in cancer cells—in the macrophages was associated with better patient outcomes. These types of transitions in macrophage inflammation and metabolism are also known to be important in cancer, for which these findings provide additional insights and reference points. more...

CD161 blockade-activated T cells

New Immunotherapy Target in Glioblastoma

A new paper in Cell from a Bridge Project team working on brain cancer sheds light on how gene expression in T cells affects response to immunotherapy in tumors called gliomas. Single-cell RNA sequencing approaches developed in the Regev Lab highlighted the role of KLRB1. Silencing this gene in cell and animal models enhanced T cell killing of glioma cells, suggesting its utility as an immunotherapy target. more...

illustration of overlapping circular DNA

Tying Up Loose Ends in RNA Therapeutics

Orna, co-founded by KI member Daniel Anderson and based on strategies developed in his lab offers an alternative to current RNA-based therapies. By connecting the loose ends of linear messenger RNA molecules, Orna’s circularized “oRNAs” could improve stability of mRNA therapies, leading to more efficient delivery of drugs into cells and increased expression of disease-fighting proteins. The company will develop and test their approach in the area of cancer immunotherapy.   more...

Bhatia tracks treatment response

Best known for applications in cancer diagnostics, the Bhatia lab’s synthetic biosensor platform can also be used to monitor and understand treatment response. In partnership with Gilead, Bhatia’s startup, Glympse Bio, is using the technology in trials with NASH patients. more...

three mammogram images with cancer lesion on third slide

Making mammography-based risk assessment more robust

Researchers led by Regina Barzilay and Constance Lehman (Mass General Hospital) developed a new risk-assessment algorithm to improve accuracy, consistency, and equity in breast cancer diagnosis. Described on YouTube and published Science Translational Medicine, the Mirai system incorporates the unique requirements of risk modeling into their AI-driven screening tools and works across diverse populations, leading to equitable healthcare outcomes. more...

Robert Weinberg

Weinberg wins Japan Prize

Three cheers to Daniel K. Ludwig Professor for Cancer Research Robert Weinberg, 2021 Japan Prize laureate in the field of Medical Science and Medicinal Science. He is honored jointly with Bert Vogelstein (Johns Hopkins Medicine) for their pioneering contributions to the development of a multi-step carcinogenesis model, its application and its impact on improving cancer treatment. The Japan Prize is awarded annually to scientists and engineers from around the world who have made significant contributions to the advancement of science and technology, thereby furthering the peace and prosperity of humankind. Read more. more...

expanding tissue

Expanding Options for Tissue Analysis

Combining tissue expansion and RNA sequencing techniques, Ed Boyden and collaborators developed an approach to mapping gene expression in tissue samples that can pinpoint an individual molecule of mRNA within a cell. In a study appearing in Science, researchers examined tumor and immune cells in breast cancer metastases, uncovering unique behaviors based on cell location. more...

melanoma cells

Personalized Vaccine Persists

A study published in Nature Medicine highlights the effectiveness of a personalized cancer vaccine developed by a Bridge Project team including Bradley Pentelute. Four years after melanoma patients were treated with a personalized vaccine, the resulting immune response remains intact and effective at controlling cancer cells. more...

fluorescence image of tumor cells with probes along the edge

Belcher Shines Brighter

In a paper published in Advanced Materials, the Belcher Lab demonstrated recent advancements to their imaging system. First, they paired short-wave infrared organic dye molecules with gold nanorods to increase the brightness of their fluorescent probes. Then, collaborating with the Hammond and Irvine groups, they designed three different surface coatings to help target the fluorescent probes to tumors. In ovarian cancer mouse models, the researchers showed that the probes are not only brighter, but that all three coatings target efficiently to tumors, making them ideal for use in real-time imaging guided surgery.
 
This work was funded in part by the Koch Institute Frontier Research Program through the Curt and Kathy Marble Cancer Research Fund. more...

For pTyr's Sake

White Lab researchers have developed a new method for profiling tyrosine phosphorylation, a cell signaling process that is often dysregulated in cancer. The high-throughput array, described in Cancer Research and funded in part by the MIT Center for Precision Cancer Medicine, opens up new clinical avenues for personalized treatment based on cell signaling more...

Hungry for Answers

Nearly 100 years ago, Otto Warburg discovered that cancer cells metabolize sugar differently than healthy cells, increasing fermentation to fuel their rapid proliferation despite being a less efficient way to extract energy from food. Today, as new cancer drugs targeting cell metabolism move into the clinic, understanding the mechanism behind this paradox remains as pressing as ever.

Research by the Vander Heiden Lab, published in Molecular Cell, shows how fermentation drives increased regeneration of a molecule known as NAD+, required to synthesize DNA and other cellular building blocks. Their findings offer a possible explanation for the metabolic mystery behind the Warburg Effect and could also explain why other fast-dividing cells turn to fermentation despite its relative inefficiency.

This work was funded in part by the Ludwig Center for Molecular Oncology, the MIT Center for Precision Cancer Medicine and the Lustgarten Foundation. more...

Science Gets a Promotion

Like many at MIT, KI community members have long played key roles as scientific advisors and leaders at the national level. This year, the KI congratulates biologist Eric Lander, named Presidential Science Advisor, and Vice President of Research Maria Zuber—under whose purview the KI sits—now co-chair of the President’s Council of Advisors on Science and Technology. Beyond these well-deserved appointments, the KI celebrates the fact that, with the Presidential Science advisor role elevated to a cabinet level position, science itself now has a seat at the table. more...

Disarming Cancer

Weinberg and Spranger Lab researchers are studying the biology behind two of cancer's most deadly evolutions—metastasis and resistance to treatment. Previous work showed that quasi-mesenchymal cells cross-protect their epithelial neighbors in the same tumor and shield it from immune attack, keeping out cancer-destroying immune cells. In new work supported by the Ludwig Center for Molecular Oncology at MIT and appearing in Cancer Discovery, researchers identified six quasi-mesenchymal molecules that help carry out this defense. Of the six, the enzyme CD73 proved most effective in making breast carcinoma cells more vulnerable to immunotherapy and reducing the severity of metastasis. more...

New Year, New Faces

A trio of new Koch Institute extramural faculty members hails from MIT’s Departments of Chemical Engineering and Chemistry. Katie Galloway connects basic research questions—in gene circuits, genome architecture, and cell-fate transitions—to tool development for biomedical applications. Laura Kiessling uses chemical biology to elucidate the biological roles of carbohydrates, with a focus on learning new mechanistic concepts. Ron Raines studies the chemical basis and biological purpose for protein structure and function. A hearty welcome to all! more...

NCI, MIT Cancer Research Turn 50

This year marks the 50th anniversary of the National Cancer Institute, the history of which is intimately linked with that of cancer research at MIT. Following passage of the National Cancer Act of 1971, Professor Salvador Luria, the Nobel prize-winning head of MIT’s Department of Biology, applied for and won funding to open one of the first NCI-designated cancer centers. The MIT Center for Cancer Research, predecessor to the Koch Institute, set the standard for investigating the fundamental nature of cancer, making key biological discoveries that helped shape the field and advance new treatments. Efforts are underway to name the KI Auditorium in Luria’s honor.

Read about Luria’s science and mentorship here. more...